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Lyapunov spreading of semiclassical wave packets for the Lorentz gas: Theory and applications
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We consider the quantum-mechanical propagator for a particle moving-timensional Lorentz gas, with
fixed, hard-sphere scatterers. To evaluate this propagator in the semiclassical region, and for times less than the
Ehrenfest time, we express its effect on an initial Gaussian wave packet in terms of quantities analogous to
those used to describe the exponential separation of trajectories in the classical version of this system. This
result relates the spread of the wave packet to the rate of separation of classical trajectories, characterized by
positive Lyapunov exponents. We consider applications of these results, first to illustrate the behavior of the
wave-packet autocorrelation functions for wave packets on periodic orbits. The autocorrelation function can be
related to the fidelity, or Loschmidt echo, for the special case that the perturbation is a small change in the mass
of the particle. An exact expression for the fidelity, appropriate for this perturbation, leads to an analytical
result valid over very long time intervals, inversely proportional to the size of the mass perturbation. For such
perturbations, we then calculate the long-time echo for semiclassical wave packets on periodic orbits.
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I. INTRODUCTION C(t)= |<O|e—itH/h|0>|2’ (1)

The search for signatures of classical chaos in correspond!NereH is the Hamiltonian of the system ai@) is an initial

ing quantum systems is one of the main themes of quanturﬂuamum state. We find that, for wave packets on periodic

chaos. The literature in this subject is large, much of it e 0rbits, this function exhibits a series of maxima, with ampli-

. . R tudes decreasing mainly exponentially with time, as
Fere e concider a simpls veraion of this cueston. namely? P Hherefce=3,\ s the classical KS entropy, and
P q ' Yhe \; are the positive Lyapunov exponents for the corre-

we de;cribe a semiclassical calculation of the shprt tim ponding periodic orbits. This type of decay of the autocor-
spregdlng of a wave packet for the quantum version of Felation function was first described by Hell&]. Here we
classically chaotic system and show, as one might expeclsq cajculate the coefficient in front of the exponential. This
that it is governed o a large extent by the Lyapunov expo¢pefficient has a subexponential time dependence. The auto-
nents characterizing the exponential separation of close trggrelation function exhibits a set of maxima separated by
jectories of the classical system. We consider a Lorentz gageep minima that appear for simple physical reasons, as we
which consists of a particle, or a collection of noninteractingexplain in Sec. IlI.
particles, moving ind dimensions among a collection of  These results are limited in applicability to timiess than
fixed scatterers, generally taken to Hedimensional hard the Ehrenfest timewhich is the time necessary for a wave
spheres, with finite horizon. The case in which the scattererpacket to spread to the size of a scatterer. However, there is
are centered at the vertices of a regular lattice is the Sinain application of them to the Loschmidt echo, or quantum
billiard. Related work on this problem, which has been dondidelity, of a special type which is valid for a much larger
by Wirzba[3], will be mentioned in Sec. II. time interval, greater than the Ehrenfest time. The Loschmidt
We consider the propagator for a semiclassical particl&cho[7-9], M(t), is defined by
moving among the scatterers. The de Broglie wavelength of M(t) = |<0|eit(H+2),ﬁe_itH,ﬁ|o>|2 )
the moving patrticle is taken to be small compared both to the '
size of a scatterer and to the average distance between schtereH is the Hamiltonian for the systerd, is a small per-
terers. The propagator is evaluated by semiclassical methodisrbing Hamiltonian, andO) is some initial quantum state.
for time intervals where a number of collisions take place. AsFor the case in whichl is the Lorentz gas Hamiltonian with
long as the wave packet remains small, its spreading witlhard-sphere scatterers, and the perturbation is a small change
time is governed by a set of equations that are the quantuim the mass of the moving particle, it is straightforward to
counterparts to the curvature equations of Sinai and coshow thatM(t) is equal to the wave-packet autocorrelation
workers [4] that determine the Lyapunov exponents andfunction evaluated at a scaled time, which can be made to be
Kolmogorov-Sinai(KS) entropy for the classical system. We much shorter than the physical timeby choosing a suitably
can then easily relate the spreading of the wave packet to themall mass perturbation. Therefofer, this special perturba-
classical Lyapunov exponents. tion and hard-sphere Lorentz gas system, the quantum fidel-
Next we apply this result to a calculation of the wave-ity can be evaluated for very long times, if one knows the
packet autocorrelation functidithe return probability, C(t), behavior of the autocorrelation function for a much shorter
defined by time interval.
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This paper is organized as follows. In Sec. Il, we con-
struct the semiclassical propagator for the moving particle
and show that when it is used to determine the time evolution y
of a small initial Gaussian wave packet, the spreading of the
wave packet is, for times less than the Ehrenfest time, deter-
mined by the classical curvature equati¢d$ These equa-
tions describe the rate of spreading of a classical, infinitesi-

r.

mal trajectory bundle. In Sec. lll, we apply this result to X

calculate the wave-packet autocorrelation function for peri-

odic orbits, as an illustration of the behavior predicted and FIG. 1. Particle-fixed frame of reference at tie0.
described by Hellef5]. In Sec. IV we derive an exact ex-

pression for the Loschmidt ech®/(t), for a quantum par- Qo — Q= Q0 +iXot/2, (6)

ticle moving in a hard-sphere Lorentz gas, where the per-
turbed Hamiltonian is obtained from the unperturbed one by _ .
a small change of the mass of the moving pgrticle. This result o= 4 =Qo+iRvti2, ™
allows us to describe the behavior of the echo for long physiwherev =|po|/m is the average velocity of the particle. The
cal times in terms of the short time behavior of the wave-new particle-fixed frame of reference is related to the station-
packet autocorrelation functiorC(t). The calculations in ary one by means of E¢4), with the wave-packet centart,
these sections are for two-dimensional systems with hardeplaced byr,=ry+(po/|po|)vt andU,=U,. The average mo-
disk scatterers. The three-dimensional version of this work isnentum of the wave packet stays unaffecteg:py.

presented in Sec. V. Here we show that the role of the posi- To find the semiclassical propagator describing a collision
tive Lyapunov exponent in our calculations for two- of the particle with one scatterer, we start with the general
dimensional systems is taken by KS entropy, i.e., by the surexpression for the semiclassical propagator as a sum of terms
of the two positive Lyapunov exponents for the three-of the form[10]

dimensional system. We summarize our results in Sec. VI.

1 \92 Sr,r't) wu
’ 1/2 ; o it
Il. THE SEMICLASSICAL PROPAGATOR FOR THE Gedr,r',t) = (277%) |D| exp | 5 + 2 !

LORENTZ GAS ®)
We consider the semiclassical motion in two dimensions, o ) _ _
d=2, of a Gaussian wave packet, with average momenturhereS(r,r’ 1) is the classical action along a classical path

Po. Whose initial form is given by fromr’ to r in time t, u is an index equal to twice the
_ ) ) number of collisions of the particle with hard disk scatterers
_ _ —1/2 7 _L) over timet [11], D=de(-#S/ar or'), andd=2. In general,
(r0> = go(r) = (27a1000) exp(}(g 40, 4Q,)° there are two classical paths connecting poingndr’, as-

&) suming thatr is not in the geometric shadow of: a re-
flected path and a direct one. The contribution of the direct
wherex=#/|py| is the de Broglie wavelength of the moving path fromr’ tor to the time evolution of the wave packet is
particle, ando?,=1/Re;3) and o5=1/Re),") character- negligible after timet if a classical particle with momentum
ize the size of the wave packet in tlieand » directions, pg would collide with the scatterer during the intery@l t).

respectively(Re denotes the real part Thus, we only consider the propagator given by the reflected
The (£, ) system of coordinates is chosen with its origin path.

at the center of the wave packej, and the/ axis pointing in Consider a wave packet centered arougdt time t=0

the direction ofp,, with the 7 axis perpendicular t@,, before a collision and aroung att after the collision, Fig. 2.

The origin of the coordinate frame is at the point of classical

r:r0+Uo<§>, (4)
Y

whereUg is a 2X 2 real matrix relating the two coordinate
systems, see Fig. 1.

When the wave packet is far from any scatterers, its time
propagation is dominated by free streaming, described by the
propagator

m d/2 im
Gy(r,r',t) = (m) exp%(r -r')?, (5

wherem is the mass of the moving particle, ade2. Ap-
plication of this propagator to the wave function given by
Eq. (3) yields, up to an irrelevant phase factor, a new Gauss- FIG. 2. Particle-fixed frames of referendg¢’, »') at time 0 and
ian wave packet of the form of E¢3) with (¢, m) att.
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collision. We suppose that the wave packet to which the @

propagator will be applied is sufficiently small that we only G (. 7',1) =f dTllJ d7,Gss( 7, 7, 1/2)

need to find classical trajectories by minimizing the action

for points starting close toj and ending close to, at time % 6(772, 7)Gis( 771, 7, 1/2), (13)

t. We then write the actioBr(ro+dr,rg+4or',t) for a trajec-

tory from rg+4r’, |or'|<|r¢|, colliding with a scatterer at where we introduced an instantaneous collision propagator,
point R and arriving atr o+ or, |or|<|rg|, at timet as S5, 7'), according to

m
S(ro+orrp+ar’ )=—(R-ry=o'|+|rg+ & —R|)% = ) ) i’
° ° 2t | ° [+Iro | Clpn')=dln-n)exp——. (14
) Aacosg¢

Equation (13) allows us to represent the propagator for a

The variation of this action with respect to the point of col- single scattering evenG.Z, 7.2, 7' 1), as a product of
lision, R, leads to an extremum equation that is used to de: 9 9 scb: 726 2 75 P

termine the collision pointR. The algebra simplifies a bit if three succ?ssi,ve prop§gatc(|i_$:a free—streaming.p.ropagator,
we take the case whepe)|=|r,—R|=r. Using the variational Gr(éy, "', 1/2), (i) an instantaneous collision propa-
procedure, we find gator, 8({;={1)C(n, 1) affecting the » component ofi,
and (iii ) another free-streaming propagator,
God &m0 ) =CRLL DG (7' ), (10)  Gull,m,L, M, t/2).
Assuming that the wave-packet sizg remains smaller
with than radiusa of a scatterer, over the timiewe now construct
) the propagator for a trajectory with several collisions of the
) ( 1 )1/2 i((+2r-¢')? moving particle with scatterers as a combination of free par-
Gl(Gd' 0= ex (17 ~ Moving pat ' S !N -€ Pa
s¢ Ari Xr 4xr ticle and single collision propagators. This is appropriate in
the semiclassical approximation when the size of the wave
and packet is small compared to the size of a scatterer, and to the
1 average separat.ioin of the scatterers. Both free flig_ht and in-
G(Z)(n 7= ( acos¢ ) stantaneous collision propagators leave the Gaussian form of
ser AgiXr(r +acosqo) a wave packet invariant. While the effect of the free stream-
ing is described by Eq$6) and(7), the instantaneous colli-

ia(n— 7')2cos¢+ 2ir[ 7+ (7')?]

X exp sion propagator, Eq14), when applied to a Gaussian wave
4xr(r + acos¢) packet leads to an instantaneous chang® igiven by
(12
11 4
Here ,{ and 7',{’ are coordinates with origins ag andr, 00 xacoss’ (15

respectively, such thaf,{’ are along the direction of the

|torob§blllty curtr_enT, and7.i|77 t"’“? '3 _dlrltza_cnozns':petrr;])er_]d|t(;]ular where superscripts are used to distinguish variables imme-
0 ¢,¢, respectively, as illustrated in Fig. 2. Furthér)s the . diately before and immediately after a collision. As men-

angle of incidence in thg collision. The t'm? dependence Nioned above(), is unaffected by instantaneous collisions:
the propagator appears inthrough the relation 2=ut. +_ -

- - - -1t .- ” = H
There are limits to the range of applicability of the semi The free-streaming transformation@f, coupled with the

_collisional transformation of)™ to Q* given above, provides

Y . lyzing the ergodic properties of the classical Lorentz gas in
this limitation that allows one to consider only the reflectedt rms of the curvature of a classical wave fréat12]. In

p_ath w hile derlv(;ntg tge propﬁgatoril Set%ond,tr':he dW?megaCk(? ct, a simple transformation allows us to recover the classi-
siz€ 1S assumed 1o be much smaller than the dista cal equations, and to identify the appearance of the positive
tween the center of the wave packet and the point where thI'E'yapunov exponent in the semiclassical formulas. To see

particle would, classically, collide with the scatterer. Thisthis let us define complex radii of curvatufg, andp, ac-

assumption makes it possible to expand the coordinates %foréling to ' '

points connected by the propagator about corresponding

wave-packet centers. . .
The propagator in the direction of motion given by Eq. Q= '_}(TJH and Q= '—7(7,_ (16)

(11) is simply the free streaming expressed in particle-fixed 2 2

coordinate frames, showing that the time evolution of ¢he

component of the time-dependent wave packetjs unaf-  In terms ofp, Egs.(7) and(15) read

fected by scattering events. Thecomponent of the propa-

gator, Eqg.(12), can be easily shown to satisfy the identity b =po+uvt free streaming, a7
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2
acosg

1
5

+

collision, (18)

1
F =
while p;=p o +vt regardless of whether any scattering events
have taken place over tinteThese equations fgi are iden-
tical with the curvature equationg] for the classical Lor-
entz gas. In an unpublished manuscript describing the dif-
fractive scattering of a wave packet by a circular scatterer,
Wirzba [3] noted that the curvature equations can also be
extracted from his formalism.

To describe the spreading of a Gaussian wave packet iQ=
the Lorentz gas, we consider a sequence of collisions param-
etrized by a set of timef;} together with a set of collision
angles{¢;}. Direct substitution of the free-streaming trans-
formation forp,, Eq. (17), into the expression for the size of
the wave packet along the coordinate, i.e., along the direc-
tion perpendicular to the average momentpnof the par-
ticle, o?=1/ReQ;H)=x/[2 Im(p {1)], yields

(@

FIG. 3. Free flight time evolution g5 ando: (a) classical case,
0; (b) quantum cases > 0.

(po + vt)? + £o(vt)?

= potut+equt

free streaming,(24)

(T /
o= p_o\"(Po +vt)? + go(vt)?
0

and 1p*=1/p +2/(acose) together withc*=0¢~ at a col-

P Fu(t—t) ty lision. Here
o= 0y —J~—J = g ex URef _,—T (19 )
ok ] y Pr 5= (M) (25)
t=\5 2
20

for tj <t<tj,,. It follows from the relation betweea and’,
and the change ip on collision, that the instantaneous scat-
tering transformation does not change the size of the wav
packet((r:j =a{j ). Thus, we can propagate, backward in

time to get
tdt’ o
o= opexp vRe| —— | =oee™,
0 Pr

whereay is the initial size of the wave packet &0, and

contains all the quantum effects; it vanishesxas 0, which
makes Eq.(24) converge to its classical counterppdt12].
Rnother way to visualize the semiclassical corrections is to
rewrite Eq.(24) in differential form,

thU(l—st) and (.thl)o't/pt. (26)

Here the second equation has its classical form, and the
gquantum correction is apparent in the first equation: it shows
that the free flight spreading of the wave packet results from
a combination of a classical linear separation of trajectories
and the quantum spreading due to the Uncertainty Principle.

The role of the Uncertainty Principle becomes apparent

(20)

= ERef ﬁ': th% (21) from the following simple consideration. Suppose one pre-
Yt )eps tlops pares a tiny minimal wave packet with spatial uncertanfy
The corresponding uncertainty in momentufp, is then
where we introduce e&eal radius of curvaturgp, as given bya,Ap=£/2. After some time, the wave-packet size
evolves toop= (Ap/m)t=Auvt/(20,) merely due to the Un-
1/p = Re(1/p). (22) certainty Principle. Writing the geometricalclassical

spreading as ¢ =oy(1+uvt/ pg), we notice that, in Eq. (24)
is essentially a simple combination o, and oyp, namely

o=\ o o0

The quantity\; can be thought of as a wave-packet stretch
ing exponent over a timé. It differs from the classical ) J . :
Lyapunov exponenh because it contains quantum effects  Figure 3 illustrates the free flight dynamics pfand o
and the limit of infinite time is not taken. The stretching 9\VeN by Eq.(26). Figure 3a) pictures the classical limit,

exponent),, converges to the Lyapunov exponexg,in the }(_:0: an arc of instantaneous radlysandnlen_gt_hcr moves
long time classical limit, with constant velocityy along the “cone” originating at a

point O. Equation(26) with ;=0 describes the time evolu-
tion of p anda in this case. In the quantum regime; 0, the
point O is also moving in the same direction as the arc, but
with a different, time-dependent, velocity equal 40; see

In order to prove Eq(23), one needs to show thatbe-  Fig. 3(b). It can be shown from Eqg25) and (26) that &,
comes the classical radius of curvature for the classical Lor—~t=2 ast— o, implying the convergence of poi@ to some

lim limA,=\. (23)

t—o X—0

entz gas asAx—0. Substituting Eq.(22) along with
Im(1/p)=x/(20?) into the transformations fdg, Egs.(17)
and(18), one gets

point O’ in the long time limit; see Fig.®). The time evo-
lution of p and o is then dominated by classical equations
whenO is close toO’.
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10 initial wave packet is characterized lay=2x 10" and p,

o axpM =10, so thatgy=156 and the system is far from the
10 / 1 Lyapunov regime at=0. Figure 4 shows that it only takes a
single collision for the system to reach the Lyapunov regime,

e<l.

The parameters in Fig. 4 are chosen so as to illustrate the
essential regimes: a short decay of quantum effectbe-
comes less than unityfollowed by the Lyapunov spreading
of the wave packety~exp(\t). The relatively small value
of the de Broglie wavelength used in this example can be
indeed achieved experimentall§3].

The classical Lyapunov exponent of a two-disk periodic
orbit is known exactlyf14,15,

0 1 2 v 3 4 5 8 v, R-a+ VR(R-2a)
n .

FIG. 4. Wave-packet sizey, real radius of curvaturg, ande R-2a a
are shown as functions of timg,for a two-disk periodic orbit. Disk  |n gur case, Eq(27) gives\/v=~1.32. The numerical evalu-
radii a=1, center-to-center separatiéi3, de Broglie wavelength - ation presented in Fig. 4 shows that a single collision is
x=10"". The °9”eSp°”d'”g4 Lyapunov exponeiv ~1.32. Initial  anoygh to initiate the exponential growth of the wave packet
wave-packet Sizey=2Xx10" anonzlo. The partch(_e is located in (with the rate given by the classical Lyapunov expohent
the middle between the two disks &t0. Exponential trends are i hersists for about five to six collisions. Our results do
shown for plots ofr ande. All distances are measured in unitsaof not apply for times longer than the duration of the Lyapunov
regime,vt, /a~=6.

(27)

We now define an interval of time, called tthgapunov
regime for which the values op ando satisfy the inequality

s<;. It follows from the free fligh_t and coIIisi_on transf_or- IIl. THE WAVE-PACKET AUTOCORRELATION

mapons forp; and o thatg is a rapldly decreasing functlop FUNCTION

of time, see Fig. 4. Therefore, once in the Lyapunov regime o _

the system stays in it for some tintg at whicho becomes As an application of the analysis of wave-packet dynam-

comparable with the size of scatterers, and our collisiorics developed above, we calculate the wave-packet autocor-
analysis breaks down. It can also be shown that if thegelation function,C(t), defined in Eq(1), for particles mov-
Lyapunov regime inequality is not satisfiedtatO, and the ing in periodic orbits. Here the initial statf)), describes a
wave packet is small, the system rapidly evolves to a stat&Gaussian wave packet centered abogtwith its average
for which this inequality is satisfied. During this transient momentump,, such that the phase poifity, po) lies on a
regime, p rapidly decreases whereasdoes not change sig- periodic orbit of the corresponding classical system. The au-
nificantly; see Fig. 4. tocorrelation function for periodic orbits in billiard systems
In the Lyapunov regime, the first equation in E¢86)  was studied by Helldi5] some time ago using different tech-
reduces to its classical counterpagst=v, so thato, grows  niques. The calculations presented here agree with Heller’s
exponentially in the same way as a small pencil of trajectoresults and provide some additional information about this
ries separates exponentially in the classical system. That isorrelation function.
o=0g expt\,), where\, is given by Eq.(21) and calculated The reasons for restricting our calculations to periodic
using only classical mechanics. It is useful to remark tat orbits are as follows. The expansion used above to obtain the
typically reaches a value close to the classical Lyapunov exsemiclassical single collision propagator in the previous sec-
ponent\ after only a few collisions; see Fig. 4. On the othertion, Eq. (10), is correct for wave packets which are small
hand, one can estimate that the upper limit,gfthe maxi- compared to disk radii and average separation among scat-
mum duration of the Lyapunov regime, g™ terers. Mathematically, this limitation is a consequence of the
~[1/(27n)]In(al x), that is, about half of the Ehrenfest time truncation of the expansion of the coordinates of starting and
[1], which for sufficiently smalk can be long enough for the final points connected by the propagatof,andr, respec-
wave packet to exhibit exponential spreading. tively, about the centers of initial and final wave packets,
Finally, we illustrate the exponential spreading of arespectively, i.e.r’=ro+dr’ andr=rq+dr. Therefore, one
Gaussian wave packet for the case of particles moving ifg€ts a close approximation to the particle’s wave function at
short, periodic orbits. We numerically evaluateandp, in ~ Positions close to the wave-packet centgyput the approxi-
Eq.(26) (and in thep™ to p* collision transformationfor the ~ mation may fail on the periphery of the wave packet. Our
simplest periodic orbit: a particle moving back and forth calculations of the autocorrelation functiorC(t), or
along the line connecting the centers of two disks. Figure 4-0schmidt echoM(t), are only reliable when the relevant
showsay, p;, and quantitye,, given by Eq.(25), for the two  overlap integrals are dominated by the central region of the
disks of radiusa=1, and the center-to-center separat®n wave function, and contributions coming from wave-packet
=3. The particle is placed in the middle between the twowings can be neglected. This condition is most easily satis-
disks att=0, and has the de Broglie wavelength 10 . The  fied when the classical motion is along a periodic orbit.
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free flight and collision transformations developed in the pre-
vious section. The probability distributio(r)|? is negli-
gible outside a small circle of radius~ oy. Therefore, the
main contribution to the overlagyy|¢:) comes from the
points inside this circle, and the central regions of the wave
packets will dominate the integrals for small center-to-center
separationd\, as illustrated in Fig. 5.

A straightforward calculation shows that forgiven by

Eq. (28),
2 A
Ct) = f dr o) yi(r)| = expl= ad?, (31
where
4
A= 291 (32
FIG. 5. A Gaussian wave packet is shown at tim® (centered %ol 9]
about pointO), and at a later timé=nT+A/v (centered about point . .
P). PointsO andP lie on the same periodic orbit, and are separated a= ER (i - A) (i + A) (33
in time byn (=0,1,2,...,N) periods,T, of the periodic orbit, plus a 2 | oﬁ Apy 0'% Xpo/ |’
short time intervalA/v. The separation distanceis assumed to be .
sufficiently small in order for the initial and final wave packets to With
overlap significantly. 1 1 2 ( 1 1 ) -1
=|—+—-————-— s
E A L P

Consider a wave packet whose initial average coordinate,
ro, and momentuny,, correspond to a phase-space point on [ 1 1 2i/f1 1\]*
o[ 202221

a periodic orbit, with periodr, of the classical Lorentz gas. —St—-—
Suppose thanT is smaller than the Ehrenfest time, for of oo A\pp po

=0,1,2,..,N, so that we can apply the analysis developedas seen from Eq(31), the autocorrelation function exhibits a
in the_prewous section in order to propagate the wave PaCk%fequence of peaks corresponding to partial reconstruction of
over times the wave packet at timesnT. These peaks, first studied by
t=nT+A/ Heller [5], have a simple physical origin: the wave packet
= v, (298 ; ; - .
repeatedly passes through the starting point giving rise to
where the displacement is sufficiently small in order for strong maxima of the return probabili(t). These maxima
the initial and final wave packets to overlap significantly, asare periodic orbit revivals and should be distinguished from
illustrated in Fig. 5. For simplicity, we take the initial wave more general classes of quantum revivals that do not require
function, ¢, to be a “circular” wave packet, i.eso=0gand  a particular periodic orbit for their appearar{&. It can be

(34)

plo=po With the explicit form shown that the time dependencefoand« is subexponential
12 compared to the exponential growth efwith time, so that
Po(X,Y) = ( 2) the periodic orbit revival peaks have predominantly Gaussian
20y form. The strength of the peaks decreases exponentially with

1 9 i time at a rate given by the Lyapunov exponent of the peri-
X exp{— —(— - —)(x2+y2) + —x], odic orbit. This follows from the fact that the height of the
o5 Apo X peaks is mainly determined by the exponential growth of the
(29  size of a wave packety~exp(\t). It is worth noting thatA
decays with time in a power-law manner causing the auto-

system, the wave packet propagated fromy, over timet, see Fig. 6.

given by Eq.(28), reads, up to an irrelevant phase factor, Figure 6 shows the numerical evaluation of the revivals in

1 \2 Eqg. (31 for the two-disk periodic orbit described in the pre-
h(X,y) :( ) vious section; see Fig. 4. A particle of the de Broglie wave-
2mo|o length x=10"" moves back and forth between two disks of
1/ 1 2 radii a=1, with the center-to-center separatiB*3, along
X ex _Z<;ﬁ - }(—Ml)(x—A)2 the line connecting the centers. The initial wave packet is

located in the middle between the two disks, and is charac-
- _(_ _ _>y2 +Lix=n) (30) te_rized by0'H020'022><_10_4 and_pHo=p0=10_. The left part of

4\ o? xp X : Fig. 6 shovys the revival maxim@,,,,, which oceur aitn]ax _
=nT. The right part shows the autocorrelation function in
Here, 0y, o, p|, andp depend on time through a sequence of small neighborhoods of the corresponding maxima.
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bation The Loschmidt echo was defined by E&). We sup-
pose that the perturbed Hamiltonian is obtained from the
unperturbed one by changing the mass of the moving par-
ticle, frommto m+é&m. The identity depends on the fact that

'§_ g for hard scatterers, no matter what their shape, the eigenfunc-
= & tions depend on wave numbers rather than on the mass of the
-E 102 E moving particle. That is, the sets of eigenfunctions for par-

. 8 ticles of different masses are the same; only the values of the
Dg o energy corresponding to the same wave numbers differ. The

b

wave functions are the solutions of the scalar Helmholtz

pry
o

o
IS

; equation
vt =6
107 i e (V2+K) ¢y (r)=0 (37
6 -107 0 1078 ) ) . -
Vo vt which satisfy the Dirichlet boundary condition thaj/(r)

) _ vanishes on the surface of each scatterer, and on the bound-
FIG. 6. Revival peaks of the wave-packet autocorrelation func'aries of the system.

tion, C(t), for the same two-disk periodic orbit as in Fig.a% 1 and
R=3. Particles de Broglie wavelength=10"". The initial wave
packet is characterized hyy=ojo=2X 10 and po=pjo=10. The
exponential trend is indicated by a straight line.

We can express the time propagator for a moving particle
of massm under a HamiltoniarH,,, as

it i7it
exp(— EHm> => |¢k>exp<‘ an2><¢k|, (38)
It is easy to show that in the case of the two-disk periodic X

orbit, the revival peaks are separated by deep minima of thehere the summation is over all possible eigenstates of the
autocorrelation function. The minima occur when the aversystem. These eigenstatés,), satisfy an orthonormality re-
age momenta of the original wave packet and the one propaation

gated in timet are pointing in opposite directions. When this _

happensi/, and ¢; interfere destructively, and the autocorre- (el i = Ok (39

lation integral,C(t), is very small. We calculate the overlap where the choice between Kronecker and Disafunctions
of ¢ and ¢ att=(n+1/2)T, when the two wave packets are is dictated by the nature of the eigenstates. EquatiBBs

centered about the same point, but move in opposite direcand (39) hold for systems with hard-wall potentials in any
tions. The initial wave function is given by E¢9), while number of spatial dimensions.

172 1/1 2 This representation of the time displacement operator, Eq.
(X,y) :( ) p{__(_z - _> 2 (38), together with the orthonormality condition, E¢B9),
2mwo|o 4\af Ap leads to the following identity:
101 2, i it it it
_Z(?_}c_)y _XX]‘ (35) ex[{%"'mm)‘“F{“ZHm) =exp(— me>, (40)
Then, wheret, is a scaled time, related to the physical titniey
2
* A 2 sm
C(t) = drio(r)a(r)| =—expl - -Rey|, (36 =
(t) U Po(r)ga(r) - p( 2 eg|> (36) te= ot (41)
whereA andg are defined in Eqs32) and(34). It can be This identity permits us to express the Loschmidt echo,

shown that the exponential in E(B6) is a very small num-  for this special perturbation, in terms of the wave-packet
ber if the conditionk < oy, pg is satisfied, e.g., in the case of autocorrelation function as

the periodic orbit considered aboveig. 4 and Fig. § Reg|

? i i 2

ranges from X 1078 to 4x }(TS, making C(t) smaller than M(t) = <O|exp<EHm+m)exp<— EHm)|O>

(Al o)exp(—4x 10°), which is practically zero when com- h h

pared with values o€(t) at the PO revival maxima. it 2
Similar deep minima of the autocorrelation function will = ‘<O|exp(— —SHm>|O> =Cl(ty). (42

occur for particles in more complicated periodic orbits, mak-

ing the revivals very pronounced. This is the main result of this section. For small perturba-

tions, om/m<1, the Loschmidt echo for long times can be

IV A SIMPLE HARD-SPHERE LOSCHMIDT ECHO expressed in terms of the short time autocorrelation function.

The physical origin of this result is straightforward. Clas-
Having described the wave-packet autocorrelation funcsically, the perturbed and unperturbed masses follow exactly
tion for the Lorentz gas, we now present a simple identitythe same trajectory, but with different velocities. Hence the
that allows us to use this correlation function to calculate forward motion with massn followed by the reversed mo-
analytically, the Loschmidt echo foneery particular pertur-  tion with massm+m has a final position which is different
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from the initial position, and corresponds to motion over the 1\34 1 \12
part of the path that is not reached by the time-reversed tra- (rjo) = yo(r) = (;) ( )
jectory. This is exactly reflected by the operator identity, Eq.
(40). Perhaps the most remarkable thing about this result is i £ o1 T-1

the fact that although for long times a small wave packet will X ex Xg_ 20 27 % ) (46)
spread over large distances, the Loschmidt echo in this case

is determined by the short time spreading of the wave packetyhere the axis is directed along the momentyy, see Fig.
even if the physical time is quite large. 1, while = (7Y, 7?)T lies in the plane perpendicular pg;

As discussed in Sec. lll, the autocorrelation funct@ih) Qg is a 2x2 complex symmetric matrix, and the T super-
exhibits a sequence of sharp revival maxima when the paiscript denotes transposition. As in the two-dimensional case,
ticle moves on a classically periodic orbit. The maxima occurthe origin of the orthogonal framg, 7Y, #?) travels with
at timesty,,« multiple of the periodT of the periodic orbit, the center of the wave packet with fixed axes, except at col-
and C(tpa) ~exp(—Atn,), Where N is the corresponding lisions, when the axes rotate so that the ngaxis is in the
classical Lyapunov exponent. According to E@2), the direction of motion of the center of the wave packet; see Fig.
mass perturbation Loschmidt echb at timet is simply the 1. The wave-packet size in thedirection o,=1/ReQ;3),
autocorrelation functiol© at the scaled timé, given by Eq.  while in the 5 plane,

(41). Thus, like the autocorrelation function, the Loschmidt

2
0000

echoM(t) exhibits a periodic sequence of maxima at times a 1 47)
" Jdet RéQFH
m+ dm m+ om
trhax= — = tmax=N T, (43 Application of the free-streaming propagat®g(r,r’,t),
om given by Eq.(5) with d=3, to the wave function above
changed), to

wheren=1,2,...,N, such thatNT is smaller than the dura-
tion of the Lyapunov regime; . The envelope of the maxima Q. =Qq+i(xwt/2)1, (48)
exhibits a mainly exponential decay,
where 1 is the 2X2 unit matrix; the change of the
roN— _ _ _ Ny {-directional component of the wave packet is the same as in
M(tma = Cllman) ~ EXP(= Mma) = EXP~ Adlmad - (44) the two-dimensional case, E).
Here we introduced acaledLyapunov exponent according The single-sphere scattering propagator is given by Eq.

to (8) with d=3. As in the two-dimensional problem, only the
reflected path contributes to the propagator for a wave packet
sm small compared to the sphere radiasClosely following the
Ng= n éTn)\' (45 arguments of Sec. Il in three dimensions, one can verify that
m the scattering propagat@.{r,r’,t) can be written as
It is important to note that the behavior of the Loschmidt
echo described by E@44) can persist for times much longer Gedr,r',t) =f dflf dr,Gys(r,r2,1/2)
thant, (for sufficiently smalldm) despite the fact that the
analysis of the wave-packet dynamics presented in Sec. Il is X C(I 5,1 )Ce(r 1,1, 1/2), (49)

valid only for times shorter that;.
The Hamiltonian perturbation used in this section is ratheivhere, in order to simplify the algebra, we consider the case
trivial since the perturbed Hamiltonian commutes with thethat the corresponding classical collision takes place at time

unperturbed Hamiltonian. Therefore, the results of this SeCr/2 The instantaneous collision transformat'rbnwhen ex-

tion are not to be compared with those obtained for more, ..o in particle-fixed coordinate frantés, 77(11),77&2)) and

complicated perturbations such as distortion of the mass ten-. 1) (2), . . .
sor[8,9]. {2,m5 . my ) just before and after the collision, respectively,
reads
V. GENERALIZATION TO THREE DIMENSIONS 6@2, M, L1 m1) = &= £) (g — 1y)

The derivation of the wave-packet propagator in Sec. I,
and the calculation of the periodic orbit revivals, Sec. lll,
were carried out for hard-disk systems in two dimensions,
d=2. We now generalize these calculations to the threewhere
dimensional casej=3, using methods similar to those used

xexp—nQbOm, (50

to describe the classical separation of close trajectories . 1

(412 g : Qe,0)= P9d|ag[@1005¢] P, (51)
The initial Gaussian wave packet in three dimensions

reads and
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cosfd —-sind To complete the analogy with the two-dimensional prob-
0= . (52 lem, we define aeal radius of curvature matrip and areal
2X 2 matrix %, in accordance with
Here ¢ is the angle of incidence in the collision plane, see . 1
Fig. 2, and@ is the azimuthal angle that th;éll) axis makes p= [p—1+ %(22T)—1:| . (60)

with the collision plane. Note that the coordinate frames
(1) (2 (1) (2 . . .
(&1, 7y, my") and (&, 77, 77; ) are related to each other by ¢ js easy to show thak determines the size of the wave

the 3x 3 reflection matrix(15-2nn), wherels is the 33 packet,02?=|dets|, and is not affected by the collision trans-
unit matrix, andn stands for the three-dimensional collision formation given by Eq(55), while p satisfies
vector, as illustrated in Fig. 2.

As seen from Eq(50), the instantaneous collision does
not affect(),, but changes they component of the wave
packet according to

sinf cosé

p i =p0 EQ(dm 0) (61)

at collisions. The free-streaming time evolutiongo&nd; is

Q-1 = Q-16) — 4_iQ(¢ 0) (53) given by the differential equations
xa“
ldp _ x\? -2 1dx _
Introducing the radius of curvature matfixas Q=ixp/2, St L ‘(5) PEZ) . =P, (62
we obtain the three-dimensional equivalent of E43) and ) ) ) ) )
(18), which are the three-dimensional version of E(6). Since
- . 3"=3", the second equation in Eq$2) can be integrated to
pi=po+utl free streaming, (54 get
t
2 -
p=p742Q(4,0) colision. (55 3=T7 exp(v f drpfl>20, (63)
0

Both transformations preserve the symmetry of the complexvhere7 stands for the time-ordering operator. Finally, taking
matrix p. the determinant of both sides of E(3), we recover Eq.
As in the two-dimensional case, we consider a sequencé?), namelyof:o% exp(thy) with
of collisions parametrized by a set of timgg together with .
a set of collision angle$¢:,6;}. Substitution of the free- _v -1
; o P - h = drtrp_~. (64)
streaming transformation, E@54), into the expression for tJo
the size of the wave packet in thep plane, of
o~ =1y ..
=Xx/(2Vdet Imp, ), yields

defp, +v(t=1)1]
deﬁtj

We can also calculate the wave-packet autocorrelation
function, C(t), defined in Eq(1), on periodic orbits for times

t t given by Eq.(28). The algebra is straightforward, but rather
2 :gfjex;J(vRef drtr}i,‘l) ; - ) n
1

oy = O'tj

lengthy, and we provide here only the main result of the
calculation: the autocorrelation functio@(t), exhibits a se-
(56) quence of sharp maxima, periodic orbit revivals, which occur
. _ . ~ _2
for tj<t<t;,;. Here we used the identity det [t at t'meStmaX,_nT’ With Crax Ttrnay S0 that'the envelope of
=|defp|"2det Imp. By propagating, backward in time, we the PO revivals shows mainly exponential decay with the

find rate given by the KS entropg,nax~ exXp(—hkstmax -
t
o= 0? exp(vRe f drtr?;f) = o2e™, (57) VI. SUMMARY
0
) In this paper, we have considered the short time spreading
where o, characterizes the wave packettal0, and of a small Gaussian wave packet for a particle moving in an
v t array of fixed, hard-sphere scatterers, in both two and three
h; = IRef drtrﬁ;l. (58) dimensions. Our calculations are based upon the semiclassi-
0 cal expression for the quantum propagator in terms of the

The quantityh, is a time-dependent stretching exponem,glassical action for paths of t_he particle. We_ find that for
which describes the growth of the area of the wave-packe'ﬂmes less than the Ehrenfest time, the spreading of the quan-

cross section perpendicular to the direction of the particle’dUm wave packet is determined by the sum of the positive
motion. It can be shown to converge in the long time classiLyapunov exponents that describe the classical separation of

cal limit to the classical Kolmogorov-SingKs) entropy nearby trajectories. We used the expressions for the propaga-

hks, equal to the sum of all positive Lyapunov exponents intor to calculate the wave-packet autocorrelation function for
’ periodic orbits. Our results agree with earlier results of

the system, e - I .
Heller [5]: (i) this function exhibits a set of sharp maxima,
lim lim h,=hes= > Aj. (590  the periodic orbit revivals, whenever the moving wave
toe X0 A>0 packet overlaps with the initial one and has the same velocity
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direction; and(ii) the strengths of the maxima decrease ex- It would be very interesting if one could provide analytic
ponentially with a decay rate given by the positive Lyapunovcalculations of quantum echoes and revivals over longer time
exponents. When the velocities are oppositely directed, thiatervals for Lorentz gases or other, simpler models, such as
correlation function takes on extremely small values, everfluantum multibaker modelgl6]. We would need to find
though the wave packets spatially overlap. Finally, we used appropriate techniques for analyzing the space and time de-
special property of the eigenfunctions for hard-sphere Lorvelopment of wave packets for times longer than the Ehren-
entz gases to evaluate the quantum fidelity, or Loschmidtest time. This would enable us to describe the numerical
echo, for a perturbing Hamiltonian that is just a small changd€Sults for the Lyapunov decay obtained by Pastawski, Jal-
in the mass of the moving particle. The property that make&0€rt, and co-worker8,9]. It is not yet clear to us how this
the eigenfunctions independent of the mass of the particldnidht be accomplished.

when expressed in terms of the wave number, allowed us to
relate the Loschmidt echo at long times to the wave-packet
autocorrelation function at much shorter times. Therefore, The authors would like to thank Daniel Wojcik, Henk van
for periodic orbits, at least, the Loschmidt echo will exhibit Beijeren, Pierre Gaspard, and Ilya Arakelyan for helpful con-
the same kind of periodic orbit revivals as one finds for theversations. J.R.D. wishes to thank the National Science
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