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We consider the quantum-mechanical propagator for a particle moving in ad-dimensional Lorentz gas, with
fixed, hard-sphere scatterers. To evaluate this propagator in the semiclassical region, and for times less than the
Ehrenfest time, we express its effect on an initial Gaussian wave packet in terms of quantities analogous to
those used to describe the exponential separation of trajectories in the classical version of this system. This
result relates the spread of the wave packet to the rate of separation of classical trajectories, characterized by
positive Lyapunov exponents. We consider applications of these results, first to illustrate the behavior of the
wave-packet autocorrelation functions for wave packets on periodic orbits. The autocorrelation function can be
related to the fidelity, or Loschmidt echo, for the special case that the perturbation is a small change in the mass
of the particle. An exact expression for the fidelity, appropriate for this perturbation, leads to an analytical
result valid over very long time intervals, inversely proportional to the size of the mass perturbation. For such
perturbations, we then calculate the long-time echo for semiclassical wave packets on periodic orbits.
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I. INTRODUCTION

The search for signatures of classical chaos in correspond-
ing quantum systems is one of the main themes of quantum
chaos. The literature in this subject is large, much of it de-
scribed in recent books by Haake and by Stöckmannf1,2g.
Here we consider a simple version of this question, namely,
we describe a semiclassical calculation of the short time
spreading of a wave packet for the quantum version of a
classically chaotic system and show, as one might expect,
that it is governed to a large extent by the Lyapunov expo-
nents characterizing the exponential separation of close tra-
jectories of the classical system. We consider a Lorentz gas,
which consists of a particle, or a collection of noninteracting
particles, moving ind dimensions among a collection of
fixed scatterers, generally taken to bed-dimensional hard
spheres, with finite horizon. The case in which the scatterers
are centered at the vertices of a regular lattice is the Sinai
billiard. Related work on this problem, which has been done
by Wirzba f3g, will be mentioned in Sec. II.

We consider the propagator for a semiclassical particle
moving among the scatterers. The de Broglie wavelength of
the moving particle is taken to be small compared both to the
size of a scatterer and to the average distance between scat-
terers. The propagator is evaluated by semiclassical methods
for time intervals where a number of collisions take place. As
long as the wave packet remains small, its spreading with
time is governed by a set of equations that are the quantum
counterparts to the curvature equations of Sinai and co-
workers f4g that determine the Lyapunov exponents and
Kolmogorov-SinaisKSd entropy for the classical system. We
can then easily relate the spreading of the wave packet to the
classical Lyapunov exponents.

Next we apply this result to a calculation of the wave-
packet autocorrelation functionsthe return probabilityd, Cstd,
defined by

Cstd = zk0ue−itH/"u0lz2, s1d

whereH is the Hamiltonian of the system andu0l is an initial
quantum state. We find that, for wave packets on periodic
orbits, this function exhibits a series of maxima, with ampli-
tudes decreasing mainly exponentially with time, as
exps−hKStd, wherehKS=oili is the classical KS entropy, and
the li are the positive Lyapunov exponents for the corre-
sponding periodic orbits. This type of decay of the autocor-
relation function was first described by Hellerf5g. Here we
also calculate the coefficient in front of the exponential. This
coefficient has a subexponential time dependence. The auto-
correlation function exhibits a set of maxima separated by
deep minima that appear for simple physical reasons, as we
explain in Sec. III.

These results are limited in applicability to timesless than
the Ehrenfest time, which is the time necessary for a wave
packet to spread to the size of a scatterer. However, there is
an application of them to the Loschmidt echo, or quantum
fidelity, of a special type which is valid for a much larger
time interval, greater than the Ehrenfest time. The Loschmidt
echof7–9g, Mstd, is defined by

Mstd = zk0ueitsH+Sd/"e−itH/"u0lz2. s2d

HereH is the Hamiltonian for the system,S is a small per-
turbing Hamiltonian, andu0l is some initial quantum state.
For the case in whichH is the Lorentz gas Hamiltonian with
hard-sphere scatterers, and the perturbation is a small change
in the mass of the moving particle, it is straightforward to
show thatMstd is equal to the wave-packet autocorrelation
function evaluated at a scaled time, which can be made to be
much shorter than the physical timet, by choosing a suitably
small mass perturbation. Therefore,for this special perturba-
tion and hard-sphere Lorentz gas system, the quantum fidel-
ity can be evaluated for very long times, if one knows the
behavior of the autocorrelation function for a much shorter
time interval.
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This paper is organized as follows. In Sec. II, we con-
struct the semiclassical propagator for the moving particle
and show that when it is used to determine the time evolution
of a small initial Gaussian wave packet, the spreading of the
wave packet is, for times less than the Ehrenfest time, deter-
mined by the classical curvature equationsf4g. These equa-
tions describe the rate of spreading of a classical, infinitesi-
mal trajectory bundle. In Sec. III, we apply this result to
calculate the wave-packet autocorrelation function for peri-
odic orbits, as an illustration of the behavior predicted and
described by Hellerf5g. In Sec. IV we derive an exact ex-
pression for the Loschmidt echo,Mstd, for a quantum par-
ticle moving in a hard-sphere Lorentz gas, where the per-
turbed Hamiltonian is obtained from the unperturbed one by
a small change of the mass of the moving particle. This result
allows us to describe the behavior of the echo for long physi-
cal times in terms of the short time behavior of the wave-
packet autocorrelation function,Cstd. The calculations in
these sections are for two-dimensional systems with hard
disk scatterers. The three-dimensional version of this work is
presented in Sec. V. Here we show that the role of the posi-
tive Lyapunov exponent in our calculations for two-
dimensional systems is taken by KS entropy, i.e., by the sum
of the two positive Lyapunov exponents for the three-
dimensional system. We summarize our results in Sec. VI.

II. THE SEMICLASSICAL PROPAGATOR FOR THE
LORENTZ GAS

We consider the semiclassical motion in two dimensions,
d=2, of a Gaussian wave packet, with average momentum
p0, whose initial form is given by

kr u0l ; c0sr d = s2psi0s0d−1/2expS i

Â
z −

z2

4Vi0
−

h2

4V0
D ,

s3d

whereÂ=" / up0u is the de Broglie wavelength of the moving
particle, andsi0

2 =1/ResVi0
−1d and s0

2=1/ResV0
−1d character-

ize the size of the wave packet in thez and h directions,
respectivelysRe denotes the real partd.

The sz ,hd system of coordinates is chosen with its origin
at the center of the wave packet,r 0, and thez axis pointing in
the direction ofp0, with the h axis perpendicular top0,

r = r 0 + U0Sz

h
D , s4d

whereU0 is a 232 real matrix relating the two coordinate
systems, see Fig. 1.

When the wave packet is far from any scatterers, its time
propagation is dominated by free streaming, described by the
propagator

Gfssr ,r 8,td = S m

2pi"t
Dd/2

exp
im

2"t
sr − r 8d2, s5d

wherem is the mass of the moving particle, andd=2. Ap-
plication of this propagator to the wave function given by
Eq. s3d yields, up to an irrelevant phase factor, a new Gauss-
ian wave packet of the form of Eq.s3d with

Vi0 → Vit = Vi0 + iÂvt/2, s6d

V0 → Vt = V0 + iÂvt/2, s7d

wherev= up0u /m is the average velocity of the particle. The
new particle-fixed frame of reference is related to the station-
ary one by means of Eq.s4d, with the wave-packet center,r 0,
replaced byr t=r 0+sp0/ up0udvt andUt=U0. The average mo-
mentum of the wave packet stays unaffected:pt=p0.

To find the semiclassical propagator describing a collision
of the particle with one scatterer, we start with the general
expression for the semiclassical propagator as a sum of terms
of the form f10g

Gscsr ,r 8,td = S 1

2pi"
Dd/2

uDu1/2expFiSSsr ,r 8,td
"

+
pm

2
DG ,

s8d

whereSsr ,r 8 ,td is the classical action along a classical path
from r 8 to r in time t, m is an index equal to twice the
number of collisions of the particle with hard disk scatterers
over timet f11g, D=dets−]2S/]r ] r 8d, andd=2. In general,
there are two classical paths connecting pointsr and r 8, as-
suming thatr is not in the geometric shadow ofr 8: a re-
flected path and a direct one. The contribution of the direct
path fromr 8 to r to the time evolution of the wave packet is
negligible after timet if a classical particle with momentum
p0 would collide with the scatterer during the intervals0, td.
Thus, we only consider the propagator given by the reflected
path.

Consider a wave packet centered aroundr 08 at time t=0
before a collision and aroundr 0 at t after the collision, Fig. 2.
The origin of the coordinate frame is at the point of classical

FIG. 1. Particle-fixed frame of reference at timet=0.

FIG. 2. Particle-fixed frames of reference:sz8 ,h8d at time 0 and
sz ,hd at t.
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collision. We suppose that the wave packet to which the
propagator will be applied is sufficiently small that we only
need to find classical trajectories by minimizing the action
for points starting close tor 08 and ending close tor 0 at time
t. We then write the actionSRsr 0+dr ,r 08+dr 8 ,td for a trajec-
tory from r 08+dr 8, udr 8u! ur 08u, colliding with a scatterer at
point R and arriving atr 0+dr , udr u! ur 0u, at timet as

SRsr 0 + dr ,r 08 + dr 8,td =
m

2t
suR − r 08 − dr 8u + ur 0 + dr − Rud2.

s9d

The variation of this action with respect to the point of col-
lision, R, leads to an extremum equation that is used to de-
termine the collision point,R. The algebra simplifies a bit if
we take the case whereur 08u= ur 0−Ru=r. Using the variational
procedure, we find

Gscsz,h,z8,h8,td = Gsc
s1dsz,z8,tdGsc

s2dsh,h8,td, s10d

with

Gsc
s1dsz,z8,td < S 1

4piÂr
D1/2

exp
isz + 2r − z8d2

4Âr
s11d

and

Gsc
s2dsh,h8,td < S a cosf

4piÂrsr + a cosfdD
1/2

3 exp
iash − h8d2 cosf + 2ir fh2 + sh8d2g

4Ârsr + a cosfd
.

s12d

Hereh,z andh8,z8 are coordinates with origins atr 0 andr 08,
respectively, such thatz,z8 are along the direction of the
probability current, andh,h8 are in directions perpendicular
to z,z8, respectively, as illustrated in Fig. 2. Further,f is the
angle of incidence in the collision. The time dependence in
the propagator appears inr, through the relation 2r =vt.

There are limits to the range of applicability of the semi-
classical propagator given by Eq.s10d. First, the particle’s
wave function is supposed to be confined to a small region in
space, the linear size of which is much smaller than the ra-
dius of the scatterer, throughout the time intervals0,td. It is
this limitation that allows one to consider only the reflected
path while deriving the propagator. Second, the wave-packet
size is assumed to be much smaller than the distancer be-
tween the center of the wave packet and the point where the
particle would, classically, collide with the scatterer. This
assumption makes it possible to expand the coordinates of
points connected by the propagator about corresponding
wave-packet centers.

The propagator in the direction of motion given by Eq.
s11d is simply the free streaming expressed in particle-fixed
coordinate frames, showing that the time evolution of thez
component of the time-dependent wave packet,ct, is unaf-
fected by scattering events. Theh component of the propa-
gator, Eq.s12d, can be easily shown to satisfy the identity

Gsc
s2dsh,h8,td =E dh1E dh2Gfssh,h2,t/2d

3 Ĉsh2,h1dGfssh1,h8,t/2d, s13d

where we introduced an instantaneous collision propagator,

Ĉsh ,h8d, according to

Ĉsh,h8d = dsh − h8dexp
ih2

Âa cosf
. s14d

Equation s13d allows us to represent the propagator for a
single scattering event,Gscsz ,h ,z8 ,h8 ,td, as a product of
three successive propagators:sid a free-streaming propagator,
Gfssz1,h1,z8 ,h8 ,t /2d, sii d an instantaneous collision propa-

gator, dsz2−z1dĈsh2,h1d affecting theh component ofct,
and siii d another free-streaming propagator,
Gfssz ,h ,z2,h2,t /2d.

Assuming that the wave-packet sizest remains smaller
than radiusa of a scatterer, over the timet, we now construct
the propagator for a trajectory with several collisions of the
moving particle with scatterers as a combination of free par-
ticle and single collision propagators. This is appropriate in
the semiclassical approximation when the size of the wave
packet is small compared to the size of a scatterer, and to the
average separation of the scatterers. Both free flight and in-
stantaneous collision propagators leave the Gaussian form of
a wave packet invariant. While the effect of the free stream-
ing is described by Eqs.s6d and s7d, the instantaneous colli-
sion propagator, Eq.s14d, when applied to a Gaussian wave
packet leads to an instantaneous change inV given by

1

V+ =
1

V− −
4i

Âa cosf
, s15d

where superscripts6 are used to distinguish variables imme-
diately before and immediately after a collision. As men-
tioned above,Vi is unaffected by instantaneous collisions:
Vi

+=Vi
−.

The free-streaming transformation ofVt, coupled with the
collisional transformation ofV− to V+ given above, provides
a direct connection between this semiclassical analysis of
wave-packet motion and the method of Sinaiet al. for ana-
lyzing the ergodic properties of the classical Lorentz gas in
terms of the curvature of a classical wave frontf4,12g. In
fact, a simple transformation allows us to recover the classi-
cal equations, and to identify the appearance of the positive
Lyapunov exponent in the semiclassical formulas. To see
this, let us define complex radii of curvature,r̃i and r̃, ac-
cording to

Vi =
i

2
Âr̃i and V =

i

2
Âr̃. s16d

In terms ofr̃, Eqs.s7d and s15d read

r̃t = r̃0 + vt free streaming, s17d
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1

r̃ + =
1

r̃ − +
2

a cosf
collision, s18d

while r̃it= r̃i0+vt regardless of whether any scattering events
have taken place over timet. These equations forr̃ are iden-
tical with the curvature equationsf4g for the classical Lor-
entz gas. In an unpublished manuscript describing the dif-
fractive scattering of a wave packet by a circular scatterer,
Wirzba f3g noted that the curvature equations can also be
extracted from his formalism.

To describe the spreading of a Gaussian wave packet in
the Lorentz gas, we consider a sequence of collisions param-
etrized by a set of timeshtjj together with a set of collision
angleshf jj. Direct substitution of the free-streaming trans-
formation for r̃t, Eq. s17d, into the expression for the size of
the wave packet along theh coordinate, i.e., along the direc-
tion perpendicular to the average momentump of the par-
ticle, st

2=1/ResVt
−1d=Â / f2 Imsr̃ t

−1dg, yields

st = st jU r̃t j
+ vst − tjd

r̃t j

U = st j
expSvReE

t j

t dt

r̃t
D s19d

for tj , t, tj+1. It follows from the relation betweens andr̃,
and the change inr̃ on collision, that the instantaneous scat-
tering transformation does not change the size of the wave
packet sst j

+=st j
−d. Thus, we can propagatest backward in

time to get

st = s0 expSvReE
0

t dt8

r̃t8
D = s0e

tlt, s20d

wheres0 is the initial size of the wave packet att=0, and

lt =
v
t
ReE

0

t dt

r̃t

=
v
t
E

0

t dt

rt

, s21d

where we introduce areal radius of curvature, r, as

1/r ; Res1/r̃d. s22d

The quantitylt can be thought of as a wave-packet stretch-
ing exponent over a timet. It differs from the classical
Lyapunov exponentl because it contains quantum effects
and the limit of infinite time is not taken. The stretching
exponent,lt, converges to the Lyapunov exponent,l, in the
long time classical limit,

lim
t→`

lim
Â→0

lt = l. s23d

In order to prove Eq.s23d, one needs to show thatr be-
comes the classical radius of curvature for the classical Lor-
entz gas asÂ→0. Substituting Eq. s22d along with
Ims1/r̃d=Â / s2s2d into the transformations forr̃t, Eqs.s17d
and s18d, one gets

5rt =
sr0 + vtd2 + «0svtd2

r0 + vt + «0vt

st =
s0

r0

Îsr0 + vtd2 + «0svtd26 free streaming,s24d

and 1/r+=1/r−+2/sa cosfd together withs+=s− at a col-
lision. Here

«t = S Ârt

2st
2D2

s25d

contains all the quantum effects; it vanishes asÂ→0, which
makes Eq.s24d converge to its classical counterpartf4,12g.
Another way to visualize the semiclassical corrections is to
rewrite Eq.s24d in differential form,

ṙt = vs1 − «td and ṡt = vst/rt. s26d

Here the second equation has its classical form, and the
quantum correction is apparent in the first equation: it shows
that the free flight spreading of the wave packet results from
a combination of a classical linear separation of trajectories
and the quantum spreading due to the Uncertainty Principle.

The role of the Uncertainty Principle becomes apparent
from the following simple consideration. Suppose one pre-
pares a tiny minimal wave packet with spatial uncertaintys0.
The corresponding uncertainty in momentum,Dp, is then
given bys0Dp=" /2. After some timet, the wave-packet size
evolves tosUP<sDp/mdt=Âvt / s2s0d merely due to the Un-
certainty Principle. Writing the geometricalsclassicald
spreading assCL=s0s1+vt /r0d, we notice thatst in Eq. s24d
is essentially a simple combination ofsCL andsUP, namely
st=ÎsCL

2 +sUP
2 .

Figure 3 illustrates the free flight dynamics ofr and s
given by Eq.s26d. Figure 3sad pictures the classical limit,
Â=0: an arc of instantaneous radiusr and lengths moves
with constant velocityv along the “cone” originating at a
point O. Equations26d with «t=0 describes the time evolu-
tion of r ands in this case. In the quantum regime,«.0, the
point O is also moving in the same direction as the arc, but
with a different, time-dependent, velocity equal to«v; see
Fig. 3sbd. It can be shown from Eqs.s25d and s26d that «t
, t−2 ast→`, implying the convergence of pointO to some
point O8 in the long time limit; see Fig. 3sbd. The time evo-
lution of r and s is then dominated by classical equations
whenO is close toO8.

FIG. 3. Free flight time evolution ofr ands: sad classical case,
«=0; sbd quantum case,«.0.
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We now define an interval of time, called theLyapunov
regime, for which the values ofr ands satisfy the inequality
«!1. It follows from the free flight and collision transfor-
mations forrt andst that «t is a rapidly decreasing function
of time, see Fig. 4. Therefore, once in the Lyapunov regime
the system stays in it for some timetL, at whichs becomes
comparable with the size of scatterers, and our collision
analysis breaks down. It can also be shown that if the
Lyapunov regime inequality is not satisfied att=0, and the
wave packet is small, the system rapidly evolves to a state
for which this inequality is satisfied. During this transient
regime,r rapidly decreases whereass does not change sig-
nificantly; see Fig. 4.

In the Lyapunov regime, the first equation in Eqs.s26d
reduces to its classical counterpart,ṙ<v, so thatst grows
exponentially in the same way as a small pencil of trajecto-
ries separates exponentially in the classical system. That is,
st=s0 expstltd, wherelt is given by Eq.s21d and calculated
using only classical mechanics. It is useful to remark thatlt
typically reaches a value close to the classical Lyapunov ex-
ponentl after only a few collisions; see Fig. 4. On the other
hand, one can estimate that the upper limit oftL, the maxi-
mum duration of the Lyapunov regime, istL

max

,f1/s2ldglnsa/Âd, that is, about half of the Ehrenfest time
f1g, which for sufficiently smallÂ can be long enough for the
wave packet to exhibit exponential spreading.

Finally, we illustrate the exponential spreading of a
Gaussian wave packet for the case of particles moving in
short, periodic orbits. We numerically evaluatest and rt in
Eq. s26d sand in ther− to r+ collision transformationd for the
simplest periodic orbit: a particle moving back and forth
along the line connecting the centers of two disks. Figure 4
showsst, rt, and quantity«t, given by Eq.s25d, for the two
disks of radiusa=1, and the center-to-center separationR
=3. The particle is placed in the middle between the two
disks att=0, and has the de Broglie wavelengthÂ=10−7. The

initial wave packet is characterized bys0=2310−4 and r0
=10, so that «0<156 and the system is far from the
Lyapunov regime att=0. Figure 4 shows that it only takes a
single collision for the system to reach the Lyapunov regime,
«!1.

The parameters in Fig. 4 are chosen so as to illustrate the
essential regimes: a short decay of quantum effectss« be-
comes less than unityd, followed by the Lyapunov spreading
of the wave packet,s,expsltd. The relatively small value
of the de Broglie wavelength used in this example can be
indeed achieved experimentallyf13g.

The classical Lyapunov exponent of a two-disk periodic
orbit is known exactlyf14,15g,

l =
v

R− 2a
ln

R− a + ÎRsR− 2ad
a

. s27d

In our case, Eq.s27d givesl /v<1.32. The numerical evalu-
ation presented in Fig. 4 shows that a single collision is
enough to initiate the exponential growth of the wave packet
swith the rate given by the classical Lyapunov exponentd,
which persists for about five to six collisions. Our results do
not apply for times longer than the duration of the Lyapunov
regime,vtL /a<6.

III. THE WAVE-PACKET AUTOCORRELATION
FUNCTION

As an application of the analysis of wave-packet dynam-
ics developed above, we calculate the wave-packet autocor-
relation function,Cstd, defined in Eq.s1d, for particles mov-
ing in periodic orbits. Here the initial state,u0l, describes a
Gaussian wave packet centered aboutr 0 with its average
momentump0, such that the phase pointsr 0, p0d lies on a
periodic orbit of the corresponding classical system. The au-
tocorrelation function for periodic orbits in billiard systems
was studied by Hellerf5g some time ago using different tech-
niques. The calculations presented here agree with Heller’s
results and provide some additional information about this
correlation function.

The reasons for restricting our calculations to periodic
orbits are as follows. The expansion used above to obtain the
semiclassical single collision propagator in the previous sec-
tion, Eq. s10d, is correct for wave packets which are small
compared to disk radii and average separation among scat-
terers. Mathematically, this limitation is a consequence of the
truncation of the expansion of the coordinates of starting and
final points connected by the propagator,r 8 and r , respec-
tively, about the centers of initial and final wave packets,
respectively, i.e.,r 8=r 08+dr 8 and r =r 0+dr . Therefore, one
gets a close approximation to the particle’s wave function at
positions close to the wave-packet center,r 0, but the approxi-
mation may fail on the periphery of the wave packet. Our
calculations of the autocorrelation function,Cstd, or
Loschmidt echo,Mstd, are only reliable when the relevant
overlap integrals are dominated by the central region of the
wave function, and contributions coming from wave-packet
wings can be neglected. This condition is most easily satis-
fied when the classical motion is along a periodic orbit.

FIG. 4. Wave-packet size,s, real radius of curvature,r, and«
are shown as functions of time,t, for a two-disk periodic orbit. Disk
radii a=1, center-to-center separationR=3, de Broglie wavelength
Â=10−7. The corresponding Lyapunov exponentl /v<1.32. Initial
wave-packet sizes0=2310−4 andr0=10. The particle is located in
the middle between the two disks att=0. Exponential trends are
shown for plots ofs and«. All distances are measured in units ofa.
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Consider a wave packet whose initial average coordinate,
r 0, and momentum,p0, correspond to a phase-space point on
a periodic orbit, with periodT, of the classical Lorentz gas.
Suppose thatnT is smaller than the Ehrenfest time, forn
=0,1,2,… ,N, so that we can apply the analysis developed
in the previous section in order to propagate the wave packet
over times

t = nT+ D/v, s28d

where the displacementD is sufficiently small in order for
the initial and final wave packets to overlap significantly, as
illustrated in Fig. 5. For simplicity, we take the initial wave
function,c0, to be a “circular” wave packet, i.e.,si0=s0 and
ri0=r0 with the explicit form

c0sx,yd = S 1

2ps0
2D1/2

3 expF−
1

4
S 1

s0
2 −

2i

Âr0
Dsx2 + y2d +

i

Â
xG ,

s29d

where thex axis is directed alongp0. In the same coordinate
system, the wave packetct propagated fromc0 over timet,
given by Eq.s28d, reads, up to an irrelevant phase factor,

ctsx,yd = S 1

2psis
D1/2

3 expF−
1

4
S 1

si
2 −

2i

Âri
Dsx − Dd2

−
1

4
S 1

s2 −
2i

Âr
Dy2 +

i

Â
sx − DdG . s30d

Here,si, s, ri, andr depend on timet through a sequence of

free flight and collision transformations developed in the pre-
vious section. The probability distributionuc0sr du2 is negli-
gible outside a small circle of radiusr ,s0. Therefore, the
main contribution to the overlapkc0uctl comes from the
points inside this circle, and the central regions of the wave
packets will dominate the integrals for small center-to-center
separationsD, as illustrated in Fig. 5.

A straightforward calculation shows that fort given by
Eq. s28d,

Cstd = UE drc0
*sr dctsr dU2

=
A

s
exps− aD2d, s31d

where

A =
4

s0
2Ugig

si
U , s32d

a =
1

2
ReFgiS 1

si
2 −

2i

Âri
DS 1

s0
2 +

2i

Âr0
DG , s33d

with

g ; F 1

s2 +
1

s0
2 −

2i

Â
S1

r
−

1

r0
DG−1

,

gi ; F 1

si
2 +

1

s0
2 −

2i

Â
S 1

ri
−

1

r0
DG−1

. s34d

As seen from Eq.s31d, the autocorrelation function exhibits a
sequence of peaks corresponding to partial reconstruction of
the wave packet at timest=nT. These peaks, first studied by
Heller f5g, have a simple physical origin: the wave packet
repeatedly passes through the starting point giving rise to
strong maxima of the return probabilityCstd. These maxima
are periodic orbit revivals and should be distinguished from
more general classes of quantum revivals that do not require
a particular periodic orbit for their appearancef6g. It can be
shown that the time dependence ofA anda is subexponential
compared to the exponential growth ofs with time, so that
the periodic orbit revival peaks have predominantly Gaussian
form. The strength of the peaks decreases exponentially with
time at a rate given by the Lyapunov exponent of the peri-
odic orbit. This follows from the fact that the height of the
peaks is mainly determined by the exponential growth of the
size of a wave packet,s,expsltd. It is worth noting thatA
decays with time in a power-law manner causing the auto-
correlation function to decay slightly faster than exps−ltd;
see Fig. 6.

Figure 6 shows the numerical evaluation of the revivals in
Eq. s31d for the two-disk periodic orbit described in the pre-
vious section; see Fig. 4. A particle of the de Broglie wave-
length Â=10−7 moves back and forth between two disks of
radii a=1, with the center-to-center separationR=3, along
the line connecting the centers. The initial wave packet is
located in the middle between the two disks, and is charac-
terized bysi0=s0=2310−4 andri0=r0=10. The left part of
Fig. 6 shows the revival maximaCmax, which occur attmax
=nT. The right part shows the autocorrelation function in
small neighborhoods of the corresponding maxima.

FIG. 5. A Gaussian wave packet is shown at timet=0 scentered
about pointOd, and at a later timet=nT+D /v scentered about point
Pd. PointsO andP lie on the same periodic orbit, and are separated
in time byn s=0,1,2,… ,Nd periods,T, of the periodic orbit, plus a
short time intervalD /v. The separation distanceD is assumed to be
sufficiently small in order for the initial and final wave packets to
overlap significantly.
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It is easy to show that in the case of the two-disk periodic
orbit, the revival peaks are separated by deep minima of the
autocorrelation function. The minima occur when the aver-
age momenta of the original wave packet and the one propa-
gated in timet are pointing in opposite directions. When this
happens,c0 andct interfere destructively, and the autocorre-
lation integral,Cstd, is very small. We calculate the overlap
of c0 andct at t=sn+1/2dT, when the two wave packets are
centered about the same point, but move in opposite direc-
tions. The initial wave function is given by Eq.s29d, while

ctsx,yd = S 1

2psis
D1/2

expF−
1

4
S 1

si
2 −

2i

Âri
Dx2

−
1

4
S 1

s2 −
2i

Âr
Dy2 −

i

Â
xG . s35d

Then,

Cstd = UE drc0
*sr dctsr dU2

=
A

s
expS−

2

Â2RegiD , s36d

whereA andgi are defined in Eqs.s32d and s34d. It can be
shown that the exponential in Eq.s36d is a very small num-
ber if the conditionÂ!s0,r0 is satisfied, e.g., in the case of
the periodic orbit considered abovesFig. 4 and Fig. 6d, Regi
ranges from 2310−8 to 4310−8, makingCstd smaller than
sA/sdexps−43106d, which is practically zero when com-
pared with values ofCstd at the PO revival maxima.

Similar deep minima of the autocorrelation function will
occur for particles in more complicated periodic orbits, mak-
ing the revivals very pronounced.

IV. A SIMPLE HARD-SPHERE LOSCHMIDT ECHO

Having described the wave-packet autocorrelation func-
tion for the Lorentz gas, we now present a simple identity
that allows us to use this correlation function to calculate,
analytically, the Loschmidt echo for avery particular pertur-

bation. The Loschmidt echo was defined by Eq.s2d. We sup-
pose that the perturbed Hamiltonian is obtained from the
unperturbed one by changing the mass of the moving par-
ticle, fromm to m+dm. The identity depends on the fact that
for hard scatterers, no matter what their shape, the eigenfunc-
tions depend on wave numbers rather than on the mass of the
moving particle. That is, the sets of eigenfunctions for par-
ticles of different masses are the same; only the values of the
energy corresponding to the same wave numbers differ. The
wave functions are the solutions of the scalar Helmholtz
equation

s=2 + k2dfksr d = 0 s37d

which satisfy the Dirichlet boundary condition thatfksr d
vanishes on the surface of each scatterer, and on the bound-
aries of the system.

We can express the time propagator for a moving particle
of massm under a HamiltonianHm as

expS−
it

"
HmD = o

k
ufklexpS−

i"t

2m
k2Dkfku, s38d

where the summation is over all possible eigenstates of the
system. These eigenstates,ufkl, satisfy an orthonormality re-
lation

kfk8ufkl = dk8,k , s39d

where the choice between Kronecker and Diracd functions
is dictated by the nature of the eigenstates. Equationss38d
and s39d hold for systems with hard-wall potentials in any
number of spatial dimensions.

This representation of the time displacement operator, Eq.
s38d, together with the orthonormality condition, Eq.s39d,
leads to the following identity:

expS it

"
Hm+dmDexpS−

it

"
HmD = expS−

its

"
HmD , s40d

wherets is a scaled time, related to the physical timet by

ts =
dm

m+ dm
t. s41d

This identity permits us to express the Loschmidt echo,
for this special perturbation, in terms of the wave-packet
autocorrelation function as

Mstd = Uk0uexpS it

"
Hm+dmDexpS−

it

"
HmDu0lU2

= Uk0uexpS−
its

"
HmDu0lU2

= Cstsd. s42d

This is the main result of this section. For small perturba-
tions, dm/m!1, the Loschmidt echo for long times can be
expressed in terms of the short time autocorrelation function.

The physical origin of this result is straightforward. Clas-
sically, the perturbed and unperturbed masses follow exactly
the same trajectory, but with different velocities. Hence the
forward motion with massm followed by the reversed mo-
tion with massm+dm has a final position which is different

FIG. 6. Revival peaks of the wave-packet autocorrelation func-
tion, Cstd, for the same two-disk periodic orbit as in Fig. 4:a=1 and
R=3. Particles de Broglie wavelengthÂ=10−7. The initial wave
packet is characterized bys0=si0=2310−4 and r0=ri0=10. The
exponential trend is indicated by a straight line.
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from the initial position, and corresponds to motion over the
part of the path that is not reached by the time-reversed tra-
jectory. This is exactly reflected by the operator identity, Eq.
s40d. Perhaps the most remarkable thing about this result is
the fact that although for long times a small wave packet will
spread over large distances, the Loschmidt echo in this case
is determined by the short time spreading of the wave packet,
even if the physical time is quite large.

As discussed in Sec. III, the autocorrelation functionCstd
exhibits a sequence of sharp revival maxima when the par-
ticle moves on a classically periodic orbit. The maxima occur
at timestmax multiple of the periodT of the periodic orbit,
and Cstmaxd,exps−ltmaxd, where l is the corresponding
classical Lyapunov exponent. According to Eq.s42d, the
mass perturbation Loschmidt echoM at time t is simply the
autocorrelation functionC at the scaled timets given by Eq.
s41d. Thus, like the autocorrelation function, the Loschmidt
echoMstd exhibits a periodic sequence of maxima at times

tmax8 =
m+ dm

dm
tmax= n

m+ dm

dm
T, s43d

wheren=1,2,… ,N, such thatNT is smaller than the dura-
tion of the Lyapunov regime,tL. The envelope of the maxima
exhibits a mainly exponential decay,

Mstmax8 d = Cstmaxd , exps− ltmaxd = exps− lstmax8 d. s44d

Here we introduced ascaledLyapunov exponent according
to

ls =
dm

m+ dm
l. s45d

It is important to note that the behavior of the Loschmidt
echo described by Eq.s44d can persist for times much longer
than tL sfor sufficiently smalldmd despite the fact that the
analysis of the wave-packet dynamics presented in Sec. II is
valid only for times shorter thantL.

The Hamiltonian perturbation used in this section is rather
trivial since the perturbed Hamiltonian commutes with the
unperturbed Hamiltonian. Therefore, the results of this sec-
tion are not to be compared with those obtained for more
complicated perturbations such as distortion of the mass ten-
sor f8,9g.

V. GENERALIZATION TO THREE DIMENSIONS

The derivation of the wave-packet propagator in Sec. II,
and the calculation of the periodic orbit revivals, Sec. III,
were carried out for hard-disk systems in two dimensions,
d=2. We now generalize these calculations to the three-
dimensional case,d=3, using methods similar to those used
to describe the classical separation of close trajectories
f4,12g.

The initial Gaussian wave packet in three dimensions
reads

kr u0l ; c0sr d = S 1

2p
D3/4S 1

si0s0
2D1/2

3 expS i

Â
z −

z2

4Vi0
−

1

4
hTV0

−1hD , s46d

where thez axis is directed along the momentump0, see Fig.
1, whileh;shs1d ,hs2ddT lies in the plane perpendicular top0;
V0 is a 232 complex symmetric matrix, and the T super-
script denotes transposition. As in the two-dimensional case,
the origin of the orthogonal framesz ,hs1d ,hs2dd travels with
the center of the wave packet with fixed axes, except at col-
lisions, when the axes rotate so that the newz axis is in the
direction of motion of the center of the wave packet; see Fig.
1. The wave-packet size in thez direction si0

2 =1/ResVi0
−1d,

while in theh plane,

s0
2 =

1

Îdet ResV0
−1d

. s47d

Application of the free-streaming propagatorGfssr ,r 8 ,td,
given by Eq. s5d with d=3, to the wave function above
changesV0 to

Vt = V0 + isÂvt/2d1, s48d

where 1 is the 232 unit matrix; the change of the
z-directional component of the wave packet is the same as in
the two-dimensional case, Eq.s6d.

The single-sphere scattering propagator is given by Eq.
s8d with d=3. As in the two-dimensional problem, only the
reflected path contributes to the propagator for a wave packet
small compared to the sphere radius,a. Closely following the
arguments of Sec. II in three dimensions, one can verify that
the scattering propagatorGscsr ,r 8 ,td can be written as

Gscsr ,r 8,td =E dr 1E dr 2Gfssr ,r 2,t/2d

3 Ĉsr 2,r 1dGfssr 1,r 8,t/2d, s49d

where, in order to simplify the algebra, we consider the case
that the corresponding classical collision takes place at time

t /2. The instantaneous collision transformationĈ, when ex-
pressed in particle-fixed coordinate framessz1,h1

s1d ,h1
s2dd and

sz2,h2
s1d ,h2

s2dd just before and after the collision, respectively,
reads

Ĉsz2,h2,z1,h1d = dsz2 − z1ddsh2 − h1d

3 exp
i

Âa
h1

TQsf,udh1, s50d

where

Qsf,ud = Pu diagF 1

cosf
,cosfGPu

T, s51d

and
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Pu = Scosu − sinu

sinu cosu
D . s52d

Here f is the angle of incidence in the collision plane, see
Fig. 2, andu is the azimuthal angle that theh1

s1d axis makes
with the collision plane. Note that the coordinate frames
sz1,h1

s1d ,h1
s2dd and sz2,h2

s1d ,h2
s2dd are related to each other by

the 333 reflection matrixs13−2nnd, where13 is the 333
unit matrix, andn stands for the three-dimensional collision
vector, as illustrated in Fig. 2.

As seen from Eq.s50d, the instantaneous collision does
not affect Vi, but changes theh component of the wave
packet according to

V−1s+d = V−1s−d −
4i

Âa
Qsf,ud. s53d

Introducing the radius of curvature matrixr̃ as V; iÂr̃ /2,
we obtain the three-dimensional equivalent of Eqs.s17d and
s18d,

r̃t = r̃0 + vt1 free streaming, s54d

r̃ −1s+d = r̃ −1s−d +
2

a
Qsf,ud collision. s55d

Both transformations preserve the symmetry of the complex
matrix r̃.

As in the two-dimensional case, we consider a sequence
of collisions parametrized by a set of timeshtjj together with
a set of collision angleshf j ,u jj. Substitution of the free-
streaming transformation, Eq.s54d, into the expression for
the size of the wave packet in theh plane, st

2

=Â / s2Îdet Imr̃t
−1d, yields

st
2 = st j

2Udetfr̃t j
+ vst − tjd1g

detr̃t j

U = st j
2 expSvReE

t j

t

dt trr̃t
−1D
s56d

for tj , t, tj+1. Here we used the identity det Imr̃ −1

= udetr̃u−2det Imr̃. By propagatingst backward in time, we
find

st
2 = s0

2 expSvReE
0

t

dt trr̃t
−1D = s0

2etht, s57d

wheres0 characterizes the wave packet att=0, and

ht =
v
t
ReE

0

t

dt trr̃t
−1. s58d

The quantity ht is a time-dependent stretching exponent,
which describes the growth of the area of the wave-packet
cross section perpendicular to the direction of the particle’s
motion. It can be shown to converge in the long time classi-
cal limit to the classical Kolmogorov-SinaisKSd entropy
hKS, equal to the sum of all positive Lyapunov exponents in
the system,

lim
t→`

lim
Â→0

ht = hKS = o
l j.0

l j . s59d

To complete the analogy with the two-dimensional prob-
lem, we define areal radius of curvature matrixr and areal
232 matrix S in accordance with

r̃ ; Fr−1 +
iÂ

2
sSSTd−1G−1

. s60d

It is easy to show thatS determines the sizes of the wave
packet,s2= udetSu, and is not affected by the collision trans-
formation given by Eq.s55d, while r satisfies

r−1s+d = r−1s−d +
2

a
Qsf,ud s61d

at collisions. The free-streaming time evolution ofr andS is
given by the differential equations

1

v

dr

dt
= 1 −SÂ

2
D2

rsSSTd−2r,
1

v

dS

dt
= r−1S, s62d

which are the three-dimensional version of Eqs.s26d. Since
S+=S−, the second equation in Eqs.s62d can be integrated to
get

St = T expSvE
0

t

dtrt
−1DS0, s63d

whereT stands for the time-ordering operator. Finally, taking
the determinant of both sides of Eq.s63d, we recover Eq.
s57d, namelyst

2=s0
2 expsthtd with

ht =
v
t
E

0

t

dt trrt
−1. s64d

We can also calculate the wave-packet autocorrelation
function,Cstd, defined in Eq.s1d, on periodic orbits for times
t given by Eq.s28d. The algebra is straightforward, but rather
lengthy, and we provide here only the main result of the
calculation: the autocorrelation function,Cstd, exhibits a se-
quence of sharp maxima, periodic orbit revivals, which occur
at timestmax=nT, with Cmax,stmax

−2 , so that the envelope of
the PO revivals shows mainly exponential decay with the
rate given by the KS entropy,Cmax,exps−hKStmaxd.

VI. SUMMARY

In this paper, we have considered the short time spreading
of a small Gaussian wave packet for a particle moving in an
array of fixed, hard-sphere scatterers, in both two and three
dimensions. Our calculations are based upon the semiclassi-
cal expression for the quantum propagator in terms of the
classical action for paths of the particle. We find that for
times less than the Ehrenfest time, the spreading of the quan-
tum wave packet is determined by the sum of the positive
Lyapunov exponents that describe the classical separation of
nearby trajectories. We used the expressions for the propaga-
tor to calculate the wave-packet autocorrelation function for
periodic orbits. Our results agree with earlier results of
Heller f5g: sid this function exhibits a set of sharp maxima,
the periodic orbit revivals, whenever the moving wave
packet overlaps with the initial one and has the same velocity
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direction; andsii d the strengths of the maxima decrease ex-
ponentially with a decay rate given by the positive Lyapunov
exponents. When the velocities are oppositely directed, the
correlation function takes on extremely small values, even
though the wave packets spatially overlap. Finally, we used a
special property of the eigenfunctions for hard-sphere Lor-
entz gases to evaluate the quantum fidelity, or Loschmidt
echo, for a perturbing Hamiltonian that is just a small change
in the mass of the moving particle. The property that makes
the eigenfunctions independent of the mass of the particle,
when expressed in terms of the wave number, allowed us to
relate the Loschmidt echo at long times to the wave-packet
autocorrelation function at much shorter times. Therefore,
for periodic orbits, at least, the Loschmidt echo will exhibit
the same kind of periodic orbit revivals as one finds for the
correlation functions.

It would be very interesting if one could provide analytic
calculations of quantum echoes and revivals over longer time
intervals for Lorentz gases or other, simpler models, such as
quantum multibaker modelsf16g. We would need to find
appropriate techniques for analyzing the space and time de-
velopment of wave packets for times longer than the Ehren-
fest time. This would enable us to describe the numerical
results for the Lyapunov decay obtained by Pastawski, Jal-
abert, and co-workersf8,9g. It is not yet clear to us how this
might be accomplished.
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